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Conservative nonlinear oscillatory systems are often modeled by potentials having a rational
form for the potential energy [1–3], which lead to the equations of motion:

d2y

dt2
þ

ay3

bþ gy2
¼ 0: (1)

Here, y is the displacement. t is the time. a; b and g are non-negative parameters. It should be
noted that Eq. (1) was named the Duffing-harmonic oscillator by Mickens [3]. Defining y ¼ffiffiffiffiffiffiffiffi
b=g

p
x and t ¼

ffiffiffiffiffiffiffi
g=a

p
t; Eq. (1) is reduced to the following non-dimensional equation (which is

free of non-essential parameters given by Mickens [3]):

€x þ x3ð1þ x2Þ
�1

¼ 0: (2)

Here, overdots denote differentiation with respect to time, t. For small x, the equation of motion
(2) is that of a Duffing-type nonlinear oscillator ði:e:; €x þ x3 ffi 0Þ; while for large x, the equation
of motion (2) approximates that of a linear harmonic oscillator ði:e:; €x þ x ffi 0Þ:Hence, Eq. (2) is
referred as the Duffing-harmonic oscillator [3]. The restoring force in the equation is the same for
both negative and positive amplitudes.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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By applying the method of harmonic balance [4] with just the first harmonic present:

xðtÞ ffi x0 cosðotÞ; (3)

which satisfies the initial conditions

xð0Þ ¼ x0; _xð0Þ ¼ 0; (4)

the angular frequency, o for Eq. (2) is obtained as [3]

o2 ¼
3

4
x2
0 1þ

3

4
x2
0

� ��1

: (5)

It is interesting to note that 3
4x

2
0 is the squared angular frequency for the equation of motion:

€x þ x3 ¼ 0; which is obtained by applying the method of harmonic balance in lowest order
harmonics (3). The exact squared angular frequency for this equation is f2x2

0: Here, f ¼

pf2Fð1=
ffiffiffi
2

p
;p=2Þg�1 ffi 0:8472; and Fð1=2; p=2Þ ffi 1:8541; is the complete elliptic integral of the

first kind. Replacing 3
4
x2
0 in Eq. (5) by f2x2

0; the conjectured exact angular frequency ðoÞ of
Mickens [3] for Eq. (2) is:

o2 ¼ f2x2
0ð1þ f2x2

0Þ
�1: (6)

In Ref. [3], two non-standard finite difference schemes were constructed and the explicit scheme
was used to numerically integrate the equation of motion (2). It is noted from Ref. [3] that further
work on the Duffing-harmonic equation will center on trying to prove the relation conjectured in
Eq. (6). Infact, the frequency–amplitude relations (5) and (6) provided by Mickens [3] are
approximate. The exact angular frequency estimates to Eq. (2) is possible only through numerical
integration.
The objective of this letter is to present an approximate frequency–amplitude relation close to

the exact, assuming a single-term solution (3) and following the Ritz procedure [5]. This letter
also presents the periodic solution for Eq. (2) without numerical integration, which is achieved
by applying a rational harmonic balance approximation to the equation of motion (2) as in
Refs. [6,7].
Table 1

Comparison of the angular frequency (o) estimates of Eq. (2) for the specific amplitude, x0

Amplitude x0 Mickens [3] Present study

Eq. (5) Eq. (6) Eq. (7) Exact solutiona

0.1 0.0863 0.0844 0.0862 0.0844

1 0.6547 0.6464 0.6436 0.6368

10 0.9934 0.9931 0.9910 0.9909

aResults from the exact angular frequency–amplitude relation of Ref. [8].
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An approximate frequency–amplitude relation obtained to Eq. (2) assuming a single-term
solution (3) and following the Ritz procedure [5] is:

o2 ¼ 1þ
2

x2
0

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
0

q � 1

8><
>:

9>=
>;; (7)

which satisfies the limits

x0 is small : ½oðx0Þ�
2 ¼

3

4
x2
0 þ Oðx4

0Þ; x0 large : ½oðx0Þ�
2 ¼ 1þ O

1

x2
0

� �
:

The exact angular frequency relation to Eq. (2) was derived in Ref. [8], and the integral in the
derived relation was numerically evaluated following the general procedure of Ref. [9]. Table 1
gives comparison of the angular frequency estimates for the specified amplitudes, x0, from the
frequency–amplitude relations (5), (6) and (7) as well as with those obtained from the exact
angular frequency relation of Ref. [8] through numerical integration using a ten-point Gauss rule.
It is evident from the results presented in the Table 1 that Eq. (6) gives the exact solution as

expected for small x0. Because, for small x, Eq. (2) is that of the Duffing-type nonlinear oscillator
ð €x þ x3 ffi 0Þ for which the exact angular frequency, o ¼ fx0: This result was utilized while
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Fig. 1. Phase-space curve ( _x versus x curve) of Eq. (2) for the amplitude x0 ¼ 0:1:
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constructing the frequency–amplitude relation (6). However, Eq. (7) gives a good estimate for the
angular frequency.
Multiplying Eq. (2) by 2 _x and using the initial conditions (4), after integration one obtains the

energy relation:

ð _xÞ2 ¼ Iðx0Þ � IðxÞ; (8)

where IðxÞ ¼ x2 � lnð1þ x2Þ: Radhakrishan et al. [8] have examined the uniqueness of angular
frequency using harmonic balance from the equation of motion (2) and the energy relation (8).
Mickens and Semwogerere [6] have recommended a rational function,

xðtÞ ¼ A cosðotÞð1þ B cosð2otÞÞ�1; (9)

for the nonlinear one-dimensional oscillator differential equation. The constants A and B in Eq.
(9) are derived here using the initial conditions (4) and the values x ¼ 0 and _x ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
at the

quarter-period ði:e:; t ¼ T=4 ¼ p=ð2oÞÞ from Eq. (8). These are:

A ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
x0ð

ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
þ ox0Þ

�1 and B ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
� ox0Þð

ffiffiffiffiffiffiffiffiffiffiffi
Iðx0Þ

p
þ ox0Þ

�1:

Figs. 1–3 show the phase-space curves ( _x versus x curve) of the equation of motion (2) generated
from Eqs. (8) and (9) for amplitudes, x0 ¼ 0:1; 1 and 10. The phase-space curve generated from
Eq. (9) is close to that of the exact curve from Eq. (8).
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Fig. 2. Phase-space curve ( _x versus x curve) of Eq. (2) for the amplitude x0 ¼ 1:
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Fig. 3. Phase-space curve ( _x versus x curve) of Eq. (2) for the amplitude x0 ¼ 10:
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In summary, this letter provides an approximate frequency–amplitude relation (7) for the
equation of motion (2), which gives the results close to the exact solution. It also provides accurate
periodic solution (9) to Eq. (2) without numerical integration by applying a rational harmonic
balance approximation.
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